反渗透水处理系统结垢控制

编辑:反渗透(秦泰盛)        日期:2015/12/9 11:06:36        阅读:1925
当难溶盐类在膜元件内不断被浓缩且超过其溶解度极限时,它们就会在反渗透或纳滤膜膜面上发生结垢,如果反渗透水处理系统采用50%回收率操作时,其浓水中的盐浓度就会增加到进水浓度的两倍,回收率越高,产生结垢的风险性就越大。 目前出于水源短缺或对环境影响的考虑,设置反渗透浓水回收系统以提高回收率成为一种习惯做法,在这种情况下,采取精心设计、考虑周全的结垢控制措施和防止微溶性盐类超过其溶解度而引发沉淀与结垢尤为重要,RO/NF系统中,常见的难溶 盐为CaSO4、CaCO3和SiO2,其它可能会产生结垢的化合物为CaF2、BaSO4、SrSO4和Ca3(PO4)2。
反渗透膜元件

为了防止膜面上发生无机盐结垢,应采用如下措施:

加酸

大多数地表水和地下水中的CaCO3几乎呈饱和状态,由下式可知CaCO3的溶解度取决于pH值:

Ca2+ + HCO3- — H+ + CaCOa

因此,通过加入酸中的H+,化学平衡可以向左侧转移,使碳酸钙维持溶解状态,所用酸的品质必须是食品级。在大多 数国家和地区,硫酸比盐酸更易于使用,但是另一方面,进水中硫酸根的含量增加了,就硫酸盐垢而言,问题会严重。

CaCO3在浓水中更具有溶解的倾向,而不是沉淀,对于苦咸水而言,可根据朗格利尔指数(LSI),对于海水可根据斯蒂夫 和大卫饱和指数(S&DSI),表示这种趋于溶解的倾向。在饱和pHs的条件下,水中CaCO3处于溶解与沉淀之间的平衡状态。

LSI和S&DSI的定为:

LSI = pH - pHs (TDS < 10,000 mg/L)

S&DSI = pH - pHs (TDS > 10,000 mg/L)

仅采用加酸控制碳酸钙结垢时,要求浓水中的LSI或S&DSI指数必须为负数,加酸仅对控制碳酸盐垢有效。

加阻垢剂

阻垢剂可以用于控制碳酸盐垢、硫酸盐垢以及氟化钙垢,通常有三类阻垢剂:六偏磷酸钠(SHMP)、有机磷酸盐和多聚丙 烯酸盐。

相对聚合有机阻垢剂而言,六偏磷酸钠价廉但不太稳定,它能少量的吸附于微晶体的表面,阻止结垢晶体的进一步生长 和沉淀。但须使用食品级六偏磷酸钠,还应防止SHMP在计量箱中发生水解,一旦水解,不仅会降低阻垢效率,同时也有产 生磷酸钙沉淀的危险。因此,目前极少使用SHMP,有机磷酸盐效果更好也更稳定,适应于防止不溶性的铝和铁的结垢,高分子量的多聚丙烯酸盐通过分散作用可以减少SiO2结垢的形成。

但是聚合有机阻垢剂遇到阳离子聚电解质或多价阳离子时,可能会发生沉淀反应,例如铝或铁,所产生的胶状反应物, 非常难以从膜面上除去。对于阻垢剂的加入量,请咨询阻垢剂供应商。必须避免过量加入,因为过量的阻垢剂对膜而言也是 污染物。

在含盐量为35,000mg/L的海水反渗透系统中,结垢问题没有苦咸水中那样突出,海水受浓水渗透压所困,其系统回收率 在30~45%之间,但为安全起见,当运行回收率高于35%时,推荐使用阻垢剂。

阳离子聚电介质可能会与负电性的阻垢剂发生协同沉淀反应并污染膜表面,必须保证当添加阴离子阻垢剂时,水中不存 在明显的阳离子聚合物。

强酸阳树脂软化

可以使用Na+离子置换和除去水中结垢阳离子如Ca2+、Ba2+和Sr2+。交换饱和后的离子交换树脂用NaCl再生,这一过程称为原水软化处理。在这种处理过程中,进水pH不会改变。因此,不需要采取脱气操作,但原水中的溶解气体CO2能透过 膜进入产品侧,引起电导率的增加,操作者仍可以在软化后的水中加入一定量NaOH (直到pH8.2)以便将水中残留CO2转化 成重碳酸根,重碳酸根能被膜所脱除,使反渗透产水电导率降低,FT30膜的脱盐率在中性pH范围内较高。

选用DOWEXTM离子交换树脂Ca2+、Ba2+和Sr2+的脱除效率大于99.5%,可消除各种碳酸盐或硫酸盐垢的危险。如果及时进 行再生的话,采用强酸阳离子交换树指进行软化是非常有效和保险的阻垢方法,但主要用于中小型苦咸水系统中,而海水淡 化中不会使用软化法。

这一过程的主要缺点是相当高的NaCl消耗,存在环境问题,也不经济。选用DOWEX™ MONOSPHERE™均粒树指和逆流 再生工艺,如UPCORE™工艺,可以减少NaCl的耗量到110%的理论再生剂所需用量。

采用弱酸阳离子交换树脂脱碱度主要是大型苦咸水处理系统,它能够实现部分软化以达到节约再生剂的目的。在这一过 程中,仅仅与重碳酸根相同量的暂时硬度中的Ca2+、Ba2+和Sr2+等为H+所取代而被除去,这样原水的pH值会降低到4~5。由 于树脂的酸性基团为羧基,当pH达到4.2时,羧基不再解离,离子交换过程也就停止了。因此,仅能实现部分软化,即与重 碳酸根相结合的结垢阳离子可以被除去。因此这一过程对于重碳酸根含量高的水源较为理想,重碳酸根也可转化为CO2

HCO3- + H+ — H2O + CO2

在大多数情况下,并不希望产水中出现CO2,这时可以对原水或产水进行脱气来实现,但当存在生物污染嫌疑时(地表 水,高TOC或高菌落总数),对产水脱气更为合适。在膜系统中高CO2浓度可以抑制细菌的生长,当希望系统运行在较高的 脱盐率时,采用原水脱气较合适,脱除CO2将会引起pH的增高,进水pH>6时,膜系统的脱除率比进水pH<5时要高。

采用弱酸脱碱度的优点如下:

❖再生所需要的酸量不大于105%的理论耗酸量,这样会降低操作费用和对环境的影响;

❖通过脱除重碳酸根,水中的TDS减低,这样产水TDS也较低;

本法的缺点是:

❖残余硬度

如果需要完全软化,可以增设强酸阳树脂的钠交换过程,甚至可放置在弱酸树脂同一交换柱内,这样再生剂的耗量 仍比单独使用强酸树脂时低,但是初期投资较高,这一种组合仅当系统容量很大时才有意义。

另一种克服这一缺点的方法是在脱碱度的水中加阻垢剂,虽然迄今为止,人们单独使用弱酸阳树脂脱碱时,还从未 出现过结垢问题,但是我们仍极力建议你计算残留难溶盐的溶解度,并采取相应的措施。

❖处理过程中水的会发生pH变化

因树脂的饱和程度在运行时发生变化,经弱酸脱碱处理的出水其pH值将在3.5〜6.5范围内变化,这种周期性的pH 变化,使工厂脱盐率的控制变得很困难。当pH<4.2时,无机酸将透过膜,可能会增加产水的TDS,因此,我们推荐 用户增加一个并联弱酸软化器,控制在不同时间进行再生,以便均匀弱酸处理出水pH,其它防止极低pH值出水的 方法是脱除CO2或通过投加NaOH调节弱酸软化后出水的pH值。

石灰软化

通过水中加入氢氧化钙可除去碳酸盐硬度。

Ca(HCO3)2 + Ca(OH)2 — 2 CaCO3 + 2 H2O

Mg(HCO3)2 + 2 Ca (OH)2 — Mg(OH)2 + 2 CaCO3 + 2H2O

非碳酸钙度可以能过加入碳酸钠(纯碱)得到进一步地降低。

CaCl2 + Na2CO3 — 2 NaCl + CaCO3

石灰一纯碱处理也可以降低二氧化硅的浓度,当加入铝酸钠和三氯化铁时,将会形成CaCO3以及硅酸、氧化铝和铁的复 合物。通过加入石灰和多孔氧化镁的混合物,采用60~70°C热石灰硅酸脱除工艺,可将硅酸浓度降低到1mg/L以下。

采用石灰软化,也可以显著地降低钡、锶和有机物,但是石灰软化处理需要使用反应器,以便形成高浓度作晶核的可沉 淀颗粒,通常需要采用上升流动方式的固体接触澄清器,本过程的出水还需设置多介质过滤器,并在进入RO/NF之前应调节 pH值,使用含铁絮凝剂,不论是否同时使用或不使用高分子助凝剂(阴离子或非离子型),均可提高石灰软化的固一液分 离作用。仅当产水量大于200m3/hr的苦咸水系统才会考虑选择石灰软化预处理工艺。

预防性清洗

在某些场合下,可以通过对膜进行预防性清洗来控制结垢问题,此时系统可不需要进行软化或加化学品阻垢。通常这类 系统的运行回收率很低,约25%左右,而且1~2年左右就考虑更换膜元件。这些系统通常是以自来水或海水作水源,制造饮 用水的单元件不重要的小型系统,其最简单的清洗方式是打开浓水阀门作低压冲洗,设置清洗间隔短的模式要比长的模式有 效,例如常用每运行30分钟低压冲洗30秒。

也可以采用类似于废水处理中的批操作模式,即在每批操作之后清洗一次膜元件。清洗步骤、清洗化学品和清洗频率等 需要作个案处理和优化。特别要注意采取措施不让结垢层随运行时间的延长进一步的加剧。

调整操作参数

当其它结垢控制措施不起作用时,必须调整系统的运行参数,以防止产生结垢问题,因为保证浓水中难溶盐浓度低于溶 度积,就不会出现沉淀,这需要通过降低系统回收率来降低浓水中的浓度。

溶解度还取决于温度和pH值,水中含硅时,提高温度和pH可以增加其溶解度,二氧化硅常常是唯一考虑需要调节这些 运行参数以防止结垢的原因,因为这些参数的调节存在一些缺点,如能耗高或其它结垢的风险(如高pH下易发生CaCO3沉淀)。

对于小型系统,选择低回收率并结合预防性清洗操作模式是控制结垢最简便的手段之一。